일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 기하와 벡터
- 미적분과 통계기본
- 적분과 통계
- 함수의 연속
- 행렬
- 도형과 무한등비급수
- 정적분
- 수열
- 수학질문답변
- 수능저격
- 적분
- 중복조합
- 심화미적
- 수악중독
- 수만휘 교과서
- 함수의 극한
- 로그함수의 그래프
- 확률
- 여러 가지 수열
- 수학질문
- 수학1
- 이정근
- 이차곡선
- 행렬과 그래프
- 미분
- 경우의 수
- 수열의 극한
- 함수의 그래프와 미분
- 접선의 방정식
- 수학2
- Today
- Total
목록정적분 (50)
수악중독
함수 \(f\left( x \right) = \left\{ {\begin{array}{ll}{ - 1}&{\left( {x < 1} \right)}\\{ - x + 2}&{\left( {x \ge 1} \right)}\end{array}} \right.\) 에 대하여 함수 \(g(x)\) 를 \[g(x)=\displaystyle \int _{-1}^x (t-1)f(t) dt\]라 하자. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. \(g(x)\) 는 구간 \(1,\;2\) 에서 증가한다. ㄴ. \(g(x)\) 는 \(x=1\) 에서 미분가능하다. ㄷ. 방정식 \(g(x)=k\) 가 서로 다른 세 실근을 갖도록 하는 실수 \(k\) 가 존재한다. ① ㄴ ② ㄷ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ ..
양의 실수에서 정의된 연속함수 \(f(x)\) 가 임의의 양수 \(x\) 에 대하여 \[\displaystyle \int_{x}^{x^2} f(t) dt = \int_{1}^{x} f(t) dt ,\;\;f(1)=1\] 을 만족한다. 이때, \(100 \left \{ f(1)-f(2) \right \}\) 의 값은? ① \(-100\) ② \(-50\) ③ \(1\) ④ \(50\) ⑤ \(100\) 정답 ④
함수 \(y=f(x)\) 의 그래프가 그림과 같을 때, \(\displaystyle \int_0^{11} {f\left( {{\frac{1}{3}}x - 1} \right)dx} \)의 값을 구하시오. (단, \(f(1)=3,\;f(4)=3\)) 정답 15 인문계 교육과정은 아니지만 치환적분을 써서 좀 더 쉽게 풀 수도 있습니다. 어려운 내용이 아니니까 치환적분에 대해서 알고 있으면 도움이 될 겁니다. 치환적분을 이용해서 푸는 방법을 알고 싶으면 아래 별해 보기를 눌러주세요...
삼차함수 \(f(x)=ax^3 +bx^2 +cx+d\) 가 다음 두 조건을 만족시킨다. (가) 모든 실수 \(x\) 에 대하여 \(f(-x)=-f(x)\) 이다. (나) \(\displaystyle \int_0^1 f(x) dx = \frac{1}{2} \) \(\displaystyle \int_{-1}^1 (ax+c)f(x) dx \) 의 값을 최소로 하는 \(f(x) \) 에 대하여 \(f(-2)\) 의 값을 구하시오. (단, \(a, \;b,\;c,\;d \) 는 상수이다.) 정답 33
임의의 실수 \(a\)에 대하여 정적분 \(\displaystyle \int_a^{a + 1}\) \({\left( {{x^2} + px + q} \right)dx} \)의 값이 양수가 되기 위한 필요충분조건은 \({p^2} - 4q < \Box \) 이다. 이 때, \(\Box\) 안에 알맞은 수는? ① \(1\) ② \(\dfrac{1}{2}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{1}{4}\) ⑤ \(\dfrac{1}{6}\) 정답 ③
함수 \(f\left( x \right) = \left\{ {\matrix{{1 - x} & {\left( {0 \le x \le 1} \right)} \cr {x - 1} & {\left( {1 \le x \le 2} \right)} } } \right.\)는 임의의 실수 \(x\)에 대하여 항상 \(f(x+2)=f(x)\)를 만족시킨다. 이 때, \( \displaystyle \int_0^2\) \( {xf\left( {x + 1} \right)dx} \)의 값은? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ①
함수 \(y=f(x)\) 의 그래프가 그림과 같을 때, \[\int_{ - 2}^2 {f\left( {{x^2} - 1} \right)dx} \]의 값은? ① \(\displaystyle \frac{12-7\sqrt{2}}{3}\) ② \(\displaystyle \frac{12-8\sqrt{2}}{3}\) ③ \(\displaystyle \frac{14-6\sqrt{2}}{3}\) ④ \(\displaystyle \frac{14-7\sqrt{2}}{3}\) ⑤ \(\displaystyle \frac{14-8\sqrt{2}}{3}\) 정답 ②
함수 \(f(x)\)는 다음 두 조건을 만족한다. (가) \(f(0)=0,\; f(1)=1,\;f~'(0)={\Large \frac{1}{3}},\;f~'(1)=2\) (나) 구간 \((0,\;1)\)에서 \(f~'(x)>0,\;f~''(x)>0\) 함수 \(f(x)\) 의 역함수를 \(g(x)\) 라 하고, \(g(x)\) 의 이계도함수가 존재할 때, 정적분 \[\int_0^1 {\left| {{{g''\left( {g\left( x \right)} \right)} \over {f~'\left( {g\left( x \right)} \right)}}} \right|} \;dx\] 의 값을 구하시오. 정답 2.5
\( f(x) \) 가 \( x \) 에 대한 일차식이고, \( \displaystyle \int_{0}^{1} f(x) {\rm d } x = 1 \) 을 만족할 때, \( S = \displaystyle \int_{0}^{1} \left\{ f(x) \right\}^2 {\rm d } x \) 에 대한 다음 설명 중 옳은 것은? ① \( -1 1\) ④ \(S\)는 모든 양수값을 가진다. ⑤ \(S\)는 모든 실수 값을 가진다. 정답 ③