일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수악중독
- 기하와 벡터
- 경우의 수
- 확률
- 함수의 그래프와 미분
- 행렬과 그래프
- 수학질문
- 접선의 방정식
- 미분
- 적분
- 수학질문답변
- 수만휘 교과서
- 함수의 극한
- 적분과 통계
- 수열의 극한
- 함수의 연속
- 이정근
- 정적분
- 수열
- 도형과 무한등비급수
- 중복조합
- 로그함수의 그래프
- 이차곡선
- 행렬
- 심화미적
- 미적분과 통계기본
- 수학2
- 수능저격
- 수학1
- 여러 가지 수열
- Today
- Total
목록(9차) 미적분 I 문제풀이/적분 (155)
수악중독
함수 \(f\left( x \right) = \left\{ {\begin{array}{ll}{ - 1}&{\left( {x < 1} \right)}\\{ - x + 2}&{\left( {x \ge 1} \right)}\end{array}} \right.\) 에 대하여 함수 \(g(x)\) 를 \[g(x)=\displaystyle \int _{-1}^x (t-1)f(t) dt\]라 하자. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. \(g(x)\) 는 구간 \(1,\;2\) 에서 증가한다. ㄴ. \(g(x)\) 는 \(x=1\) 에서 미분가능하다. ㄷ. 방정식 \(g(x)=k\) 가 서로 다른 세 실근을 갖도록 하는 실수 \(k\) 가 존재한다. ① ㄴ ② ㄷ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ ..
함수 \(y=f(x)\) 의 그래프가 그림과 같을 때, \(\displaystyle \int_0^{11} {f\left( {{\frac{1}{3}}x - 1} \right)dx} \)의 값을 구하시오. (단, \(f(1)=3,\;f(4)=3\)) 정답 15 인문계 교육과정은 아니지만 치환적분을 써서 좀 더 쉽게 풀 수도 있습니다. 어려운 내용이 아니니까 치환적분에 대해서 알고 있으면 도움이 될 겁니다. 치환적분을 이용해서 푸는 방법을 알고 싶으면 아래 별해 보기를 눌러주세요...
삼차함수 \(f(x)=ax^3 +bx^2 +cx+d\) 가 다음 두 조건을 만족시킨다. (가) 모든 실수 \(x\) 에 대하여 \(f(-x)=-f(x)\) 이다. (나) \(\displaystyle \int_0^1 f(x) dx = \frac{1}{2} \) \(\displaystyle \int_{-1}^1 (ax+c)f(x) dx \) 의 값을 최소로 하는 \(f(x) \) 에 대하여 \(f(-2)\) 의 값을 구하시오. (단, \(a, \;b,\;c,\;d \) 는 상수이다.) 정답 33
반지름의 길이가 \(2 \rm cm\)인 반구형의 그릇에 매초 \(\dfrac{\pi}{5}\) \( \rm cm^3\)의 비율로 물을 넣을 때, 바닥에서 수면까지의 높이가 \(1 \rm cm\)가 되는 순간에 수면의 높이의 증가율은? ① \(\dfrac{1}{15} \) ② \( \dfrac{2}{15} \) ③ \( \dfrac{1}{5} \) ④ \( \dfrac{4}{15} \) ⑤ \( \dfrac{1}{3} \) 이 문제는 미적분과 통계기본의 교육과정에 포함되지는 않지만, 충분히 응용하여 풀 수 있는 문제입니다. 정답 ①
곡선 \( y=x^3 -16x\)와 곡선 \(y=kx(x-4)\)가 서로 다른 세 점에서 만나고 두 곡선으로 둘러싸인 두 부분의 영역의 넓이가 같을 때, 상수 \(k\)의 값을 모두 더하면? ① \(22\) ② \(20\) ③ \(18\) ④ \(16\) ⑤ \(15\) 정답 ③
임의의 실수 \(a\)에 대하여 정적분 \(\displaystyle \int_a^{a + 1}\) \({\left( {{x^2} + px + q} \right)dx} \)의 값이 양수가 되기 위한 필요충분조건은 \({p^2} - 4q < \Box \) 이다. 이 때, \(\Box\) 안에 알맞은 수는? ① \(1\) ② \(\dfrac{1}{2}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{1}{4}\) ⑤ \(\dfrac{1}{6}\) 정답 ③
함수 \(f\left( x \right) = \left\{ {\matrix{{1 - x} & {\left( {0 \le x \le 1} \right)} \cr {x - 1} & {\left( {1 \le x \le 2} \right)} } } \right.\)는 임의의 실수 \(x\)에 대하여 항상 \(f(x+2)=f(x)\)를 만족시킨다. 이 때, \( \displaystyle \int_0^2\) \( {xf\left( {x + 1} \right)dx} \)의 값은? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ①
연속함수 \(f(x)\)가 \(|x|>1\)일 때, \(f~'(x)=4x^3 , ~ |x|
원점을 출발하여 수직선 위를 움직이는 점 \(\rm P\) 의 시각 \(t\) 에서의 위치가 \(f(t)=2t^3 -9t^2 +12t\) 일 때, 다음 중 출발할 때의 운동 방향과 반대 방향으로 점 \(\rm P\) 가 움직인 거리를 나타내는 것은? ① \(f(1)-f(2)\) ② \(f(2)-f(1)\) ③ \(f(1)\) ④ \(f(2)\) ⑤ \(f(1)+f(2)\) 정답 ①
그림과 같이 곡선 \(y=x^3\) 위에서 원점과 점 \({\rm A} (2, \; 8)\) 사이를 움직이는 점 \(\rm P\) 가 있다. 이 때 어두운 부분의 넓이가 최소가 될 때 점 \(\rm P\) 의 \(x\) 좌표는? ① \(\dfrac{1}{\sqrt{3}}\) ② \(\dfrac{2}{\sqrt{3}}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{2}{3}\) ⑤ \(\sqrt{3}\) 정답 ② 이 문제는 미분을 이용해서도 풀 수 있습니다. 원점과 점 \(\rm A\) 를 연결한 직선과 곡선 \(y=x^3\) 으로 둘러싸인 부분의 넓이는 일정하기 때문에 삼각형 \(\rm OAP\) 의 넓이가 최대가 될 때가 어두운 두 부분의 넓이의 합이 최소가 될 때입니다. 따라서 직선 \(\..