일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 수열의 극한
- 경우의 수
- 행렬
- 이차곡선
- 여러 가지 수열
- 로그함수의 그래프
- 기하와 벡터
- 이정근
- 도형과 무한등비급수
- 미분
- 중복조합
- 수능저격
- 함수의 연속
- 수만휘 교과서
- 수학질문
- 수학2
- 수학질문답변
- 적분
- 심화미적
- 수악중독
- 미적분과 통계기본
- 수학1
- 정적분
- 함수의 그래프와 미분
- 행렬과 그래프
- 함수의 극한
- 적분과 통계
- 수열
- 확률
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이 (323)
수악중독
그림과 같이 선분 $\rm AB$ 위에 $\overline{\rm AE} = \overline{\rm DB}=2$ 인 두 점 $\rm D, \; E$ 가 있다. 두 선분 $\rm AE, \; DB$ 를 각각 지름으로 하는 두 반원의 호 $\rm AE, \; DB$ 가 만나는 점을 $\rm C$ 라 하고, 선분 $\rm AB$ 위에 $\overline{\rm O_1A}= \overline{\rm O_2B}=1$ 인 두 점을 $\rm O_1, \; O_2$ 라 하자. 호 $\rm AC$ 위를 움직이는 점 $\rm P$ 와 호 $\rm DC$ 위를 움직이는 점 $\rm Q$ 에 대하여 $\left | \overrightarrow{\rm O_1P} + \overrightarrow{\rm O_2Q} \right ..
양의 실수 전체의 집합에서 이계도함수를 갖는 함수 $f(t)$ 에 대하여 좌표평면 위를 움직이는 점 $\rm P$ 의 시각 $t\;(t\ge 1)$ 에서의 위치 $(x, \;y)$ 가 $\left\{ {\begin{array}{ll}{x = 2\ln t}\\{y = f(t)}\end{array}} \right.$ 이다. 점 $\rm P$ 가 점 $(0, \;f(1))$ 로부터 움직인 거리가 $s$ 가 될 때 시각 $t$ 는 $t=\dfrac{s+\sqrt{s^2+4}}{2}$ 이고, $t=2$ 일 때 점 $\rm P$ 의 속도는 $\left (1, \; \dfrac{3}{4} \right )$ 이다. 시간 $t=2$ 일 때 점 $\rm P$ 의 가속도를 $\left (-\dfrac{1}{2}, \; a ..
닫힌 구간 $[-2, \; 2]$ 에서 정의된 함수 $f(x)$ 는 $$f\left( x \right) = \left\{ {\begin{array}{ll} {x + 2}&{( - 2 \le x \le 0)}\\ { - x + 2}&{\left( {0 1$ 인 실수 $k$ 에 대하여 함수 $y=f(x)$ 의 그래프와 타원 $\dfrac{x^2}{k^2}+y^2=1$ 이 만나는 서로 다른 점의 개수를 $g(k)$ 라 하자. 함수 $g(k)$ 가 불연속이 되는 모든 $ k$ 값들의 제곱의 합은? ① $6$ ② $\dfrac{25}{4}$ ③ $\dfrac{13}{2}$ ④ $\dfrac{27}{4}$ ⑤ $7$..
그림과 같이 타원 $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2}=1$ 의 두 초점 중 $x$ 좌표가 양수인 점을 $\rm F$, 음수인 점을 $\rm F'$ 이라 하자. 타원 위의 점 $\rm P$ 에 대하여 선분 $\rm PF'$ 의 중점 $\rm M$ 의 좌표가 $ (0, \; 1)$ 이고 $\rm \overline{PM}=\overline{PF} $ 일 때, $a^2+ b^2$ 의 값은? (단, $a, \; b$ 는 상수이다.) ① $14$ ② $15$ ③ $ 16$ ④ $17$ ⑤ $18$ 정답 ②
그림과 같이 타원 $\dfrac{x^2}{a^2}+y^2=1 \;(a>\sqrt{2})$ 의 두 초점을 $\rm F, \; F'$ 이라 하자. 이 타원이 선분 $\rm FF'$ 을 지름으로 하는 원과 만나는 점 중 제2사분면에 있는 점을 $\rm P$ 라 하고, 직선 $\rm PF'$ 이 이 타원과 만나는 점 중 $\rm P$ 가 아닌 점을 $\rm Q$ 라 하자. 점 $\rm F'$ 이 선분 $\rm PQ$ 를 $2:1$ 로 내분할 때, $20a^2$ 의 값을 구하시오. (단, 점 $\rm F$ 의 $x$ 좌표는 양수이다.) 정답 $45$
좌표공간에서 직선 $\dfrac{x-2}{2}=\dfrac{y-1}{a} = \dfrac{z+5}{4}$ 에 수직이고, 점 $(1, \;1, \; -2)$ 를 지나는 평면의 방정식을 $2x+5y+bz+c=0$ 이라 할 때, $a+b+c$ 의 값을 구하시오. (단, $a, \; b, \; c$는 상수이다.) 정답 $10$
좌표공간의 점 ${\rm P}(3, \;5, \;4)$ 에서 $xy$ 평면에 내린 수선의 발을 $\rm H$ 라 하자. $xy$ 평면 위의 한 직선 $l$ 과 점 $\rm P$ 사이의 거리가 $4 \sqrt{2}$ 일 때, 점 $\rm H$ 와 직선 $l$ 사이의 거리는? ① $3$ ② $\sqrt{10}$ ③ $2\sqrt{3}$ ④ $\sqrt{15}$ ⑤ $4$ 정답 ⑤
구 $x^2+y^2+(z-1)^2=1$ 위를 움직이는 점 $\rm P$ 가 있다. 점 $\rm P$ 와 평면 $2x-y+2z-7=0$ 사이의 거리의 최댓값을 $d$ 라 할 때, $60d$ 의 값을 구하시오. 정답 $160$
좌표평면 위를 움직이는 점 ${\rm P}(x, \;y)$ 의 시각 $ t$ 에서의 위치가 $$x=\dfrac{4}{3}e^{\frac{3}{2}t}, \;\; y=\dfrac{1}{2}e^{2t}-e^t$$ 일 때, $t=1$ 에서 $t=2$ 까지 점 $\rm P$ 가 움직인 거리를 구하여라. 정답 $\dfrac{1}{2}e^4+\dfrac{1}{2}e^2-e$
좌표평면의 $ x$ 축, $y$ 축 위를 움직이는 두 점 $ \rm A, \; B$ 에 대하여서 시각 $ t\;(t>0)$ 에서의 위치가 ${\rm A} \left ( \dfrac{1}{3} t^3+4t, \; 0 \right ), \;\; {\rm B} \left ( 0, \; \sqrt{13} \right ) $ 이고 $\overrightarrow{\rm OP} = \overrightarrow{\rm OA} + \overrightarrow{\rm OB}$ 라 하자. 점 $\rm P$ 의 속력이 $7$ 일 때, 가속도의 크기는? ① $2$ ② $2\sqrt{2}$ ③ $3$ ④ $4$ ⑤ $3\sqrt{2}$ 정답 ②