관리 메뉴


수악중독

삼수선의 정리&직선과 평면이 이루는 각_난이도 상 (2024년 7월 전국연합 고3 기하 30번) 본문

기하 - 문제풀이/공간도형과 공간좌표

삼수선의 정리&직선과 평면이 이루는 각_난이도 상 (2024년 7월 전국연합 고3 기하 30번)

수악중독 2024. 7. 23. 09:55

 

 

공간에 점 P\mathrm{P} 를 포함하는 평면 α\alpha 가 있다. 평면 α\alpha 위에 있지 않은 서로 다른 두 점 A,  B\mathrm{A, \; B} 의 평면 α\alpha 위로의 정사영을 각각 A,  B\mathrm{A', \; B'} 이라 할 때, AA=9,AP=AB=5,PB=8\overline{\mathrm{AA'}}=9, \quad \overline{\mathrm{A'P}}=\overline{\mathrm{A'B'}}=5, \quad \overline{\mathrm{PB'}}=8 이다. 선분 PB\mathrm{PB'} 의 중점 M\mathrm{M} 에 대하여 MAB=π2\angle \mathrm{MAB}=\dfrac{\pi}{2} 일 때, 직선 BM\mathrm{BM} 과 평면 APB\mathrm{APB'} 이 이루는 예각의 크기를 θ\theta 라 하자. cos2θ=qp\cos^2 \theta = \dfrac{q}{p} 일 때, p+qp+q 의 값을 구하시오. (단, ppqq 는 서로소인 자연수이다.)

 

 

풀이보기

정답 111111