관리 메뉴


수악중독

정적분과 넓이_난이도 중 본문

(9차) 미적분 II 문제풀이/적분

정적분과 넓이_난이도 중

수악중독 2016. 9. 30. 01:49

그림과 같이 $x$ 좌표가 $1, \;2,\;3,\; \cdots, \; n$ 인 $x$ 축 위의 점에서 $y$ 축에 평행한 직선을 그어 곡선 $y=\dfrac{1}{2}x^2$ 과 만나는 점을 꼭짓점으로 하는 직사각형을 $n$ 개 만든다. 이 직사각형들이 곡선 $y=\dfrac{1}{2}x^2$ 에 의하여 잘려진 윗부분들의 넓이의 합을 $S_n$ 이라 할 때, $\lim \limits_{n \to \infty} \dfrac{S_n}{n^2+1}=\dfrac{q}{p}$ 이다. $p^2+q^2$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다)



Comments