일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수열
- 기하와 벡터
- 경우의 수
- 심화미적
- 수열의 극한
- 접선의 방정식
- 여러 가지 수열
- 수학2
- 수학질문답변
- 함수의 극한
- 미적분과 통계기본
- 적분과 통계
- 수학질문
- 행렬과 그래프
- 중복조합
- 로그함수의 그래프
- 수능저격
- 확률
- 함수의 그래프와 미분
- 이정근
- 정적분
- 함수의 연속
- 이차곡선
- 적분
- 수학1
- 도형과 무한등비급수
- 미분
- 수만휘 교과서
- 수악중독
- 행렬
- Today
- Total
목록미적분과 통계기본 (526)
수악중독
윗면의 반지름의 길이가 \(2 \rm cm\), 깊이가 \(6\rm cm\)인 직원뿔 모양의 그릇에 매초 \(0.5 \rm cm\)의 속도로 수면이 상승하도록 물을 넣을 때, 수면의 높이가 \(3\rm cm\)가 되는 순간의 수면의 넓이의 증가 속도는? (단, 단위는 \(\rm cm^2/\)초) ① \(\dfrac{1}{\pi}\) ② \(\dfrac{3}{2 \pi}\) ③ \(\dfrac{\pi}{3}\) ④ \(\dfrac{3}{2} \pi\) ⑤ \(\dfrac{2}{3\pi}\) 정답 ③
그림과 같이 곡선 \(y=x^3\) 위에서 원점과 점 \({\rm A} (2, \; 8)\) 사이를 움직이는 점 \(\rm P\) 가 있다. 이 때 어두운 부분의 넓이가 최소가 될 때 점 \(\rm P\) 의 \(x\) 좌표는? ① \(\dfrac{1}{\sqrt{3}}\) ② \(\dfrac{2}{\sqrt{3}}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{2}{3}\) ⑤ \(\sqrt{3}\) 정답 ② 이 문제는 미분을 이용해서도 풀 수 있습니다. 원점과 점 \(\rm A\) 를 연결한 직선과 곡선 \(y=x^3\) 으로 둘러싸인 부분의 넓이는 일정하기 때문에 삼각형 \(\rm OAP\) 의 넓이가 최대가 될 때가 어두운 두 부분의 넓이의 합이 최소가 될 때입니다. 따라서 직선 \(\..
그림에서 어두운 부분의 넓이를 각각 \(S_1 , \; S_2\) 라 할 때, \(2S_1 +S_2\) 의 값은? ① \(18\) ② \(16\) ③ \(15\) ④ \(12\) ⑤ \(9\) 정답 ①
삼차의 다항식 \(f(x)\) 에 대하여 \(f(x)-1\) 이 \((x-1)^2\) 으로 나누어 떨어지고 \(f(x)-3\) 은 \((x+1)^2\) 으로 나누어 떨어질 때, \(f(2)\) 의 값을 구하시오. 정답 3
다항식 \(f(x)\) 가 \(f(x+y)=f(x)+f(y)\) 를 만족하고 \(f\;'(0)=3\) 일 때, \(f(3)\) 의 값은? ① \(1\) ② \(3\) ③ \(5\) ④ \(7\) ⑤ \(9\) 정답 ⑤
미분가능한 함수 \(y=f(x)\) 의 구간 \([x,\; x+ \Delta x ] \) 에서 \(y\) 의 값의 변화량 \(\Delta y\) 가 \(\Delta y=2x \cdot \Delta x + k(\Delta x)^2\) 로 나타내어질 때, 상수 \(k\) 의 값은? ① \(0\) ② \(\dfrac{1}{2}\) ③ \(1\) ④ \(\dfrac{3}{2}\) ⑤ \(2\) 정답 ③
사차함수 \(f(x)={\dfrac{1}{4}} x^4 + {\dfrac{1}{3}} (a+1) x^3 - ax\) 가 \(x= \alpha, \; \gamma \) 에서 극소, \(x= \beta\) 에서 극대일 때, 실수 \(a\)의 값의 범위는? (단, \(\alpha
오른쪽 그림과 같이 두 변의 길이가 각각 \(2,\;4\) 인 직사각형 \( \rm ABCD\) 에서 변 \(\rm BC\) 위에 한 점 \( \rm P\) 를 잡고, \(\angle \rm APQ=90^{ \circ} \)가 되도록 변 \(\rm CD\) 위에 점 \(\rm Q\) 를 잡는다. \(\triangle \rm APQ\) 의 넓이가 최대일 때의 선분 \(\rm BP\) 의 길이를 \(x\) 라고 할 때, \(10x\) 의 값을 구하시오. (단, 점 \(\rm P\) 는 꼭짓점 \(\rm B,\;C\) 가 아니다.) 정답 20
그림과 같이 \(\overline {\rm AB}\) 를 지름으로 하는 반원 \(\rm O\) 가 있다. \(\overline {\rm AB}\) 를 \(n\) 등분한 점을 차례로 \(\rm A_1 , \; A_2 , \; A_3 , \cdots , \; A_{\it n}\) 이라 하고, 이 점들에서 \(\overline {\rm AB}\) 에 수직인 직선을 그어 반원 \(\rm O\) 의 호와 만나는 점을 각각 \(\rm B_1 , \; B_2 ,\; B_3 , \; \cdots , \; B_{\it n}\) 이라 하자. \(\overline {\rm AB}=6 \) 일 때, \(\lim \limits _{n \to \infty} \sum \limits _{k=1}^{n-1} \overline {{\r..