일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 함수의 극한
- 수만휘 교과서
- 함수의 그래프와 미분
- 수학질문답변
- 확률
- 적분
- 행렬
- 미분
- 함수의 연속
- 로그함수의 그래프
- 수능저격
- 수열
- 수학질문
- 행렬과 그래프
- 정적분
- 중복조합
- 경우의 수
- 적분과 통계
- 수열의 극한
- 심화미적
- 여러 가지 수열
- 이차곡선
- 도형과 무한등비급수
- 수악중독
- 수학1
- 미적분과 통계기본
- 접선의 방정식
- 수학2
- 기하와 벡터
- 이정근
- Today
- Total
목록전체 글 (5809)
수악중독
그림과 같이 \(12\) 개의 전구와 전광판으로 이루어진 신호기가 있다. \(m\) 열의 전구가 \(n\) 개 켜져 있는 경우 \(n \cdot 4^{m-1}\) 으로 계산되고, 네 개의 열이 계산된 수의 합이 전광판에 나타난다. 예를 들어, \(1\) 열에서 \(1\) 개, \(3\) 열에서 \(2\) 개의 전구가 켜진 경우, 전광판에 \(33\) 이 나타난다. \(12\) 개의 전구 중 임의로 \(2\) 개를 켤 때, 전광판에 짝수가 나타날 확률을 \(\large \frac{q}{p}\) (\(p,\;q\) 는 서로)라고 하자. \(p+q\) 의 값을 구하시오. 정답 35
\(1\) 부터 \(100\) 까지의 자연수를 곱하여 만든 수를 \(P\) 라 하자. 즉, \[P=1 \times 2 \times 3 \times 4 \times \cdots \times 98 \times 99 \times 100\] 일 때, \(\dfrac{P}{3^n}\) 가 정수가 되는 자연수 \(n\) 의 최댓값을 구하시오. 정답 48
빨간색, 파란색, 노란색 세 개의 주사위를 동시에 굴려서 나온 세 눈의 수가 정삼각형이 아닌 이등변삼각형의 세 변의 길이가 될 확률을 \(\large \frac{q}{p}\) 라 할 때, \(p+q\) 의 값을 구하시오. (단, \(p,\;q\) 는 서로소인 자연수이다.) 정답 31
\(5\) 개의 제비 중에서 당첨제비가 \(2\) 개 있다. 갑이 먼저 한 개의 제비를 뽑은 다음 을이 한 개의 제비를 뽑을 때, 갑이 당첨제비를 뽑을 사건을 \(A\), 을이 당첨제비를 뽑을 사건을 \(B\) 라 하자. 에서 옳은 것을 모두 고른 것은?(단, 한 번 뽑은 제비는 다시 넣지 않는다.) ㄱ. \({\rm P}(A)={\rm P}(B)\) ㄴ. \({\rm P} (B \;\vert \;A) > {\rm P} \left (B \;\vert \;A^c \right )\) ㄷ. \({\rm P} (B \;\vert \;A) = {\rm P} (A \;\vert \;B)\) ① ㄱ ② ㄴ ③ ㄷ ④ ㄱ, ㄴ ⑤ ㄱ, ㄷ 정답 ①
주사위를 \(10\) 번 던졌을 때, \(3\) 의 배수의 눈이 홀수번 나올 확률은? ① \(\left ( {\large \frac{1}{3}} \right )^{10}\) ② \(1-\left ( {\large \frac{1}{3}} \right )^{10}\) ③ \(\left ( {\large \frac{2}{3}} \right )^{10} \) ④ \({\large \frac{1}{2}} \left \{ 1- \left ( {\large \frac{1}{3}} \right )^{10} \right \}\) ⑤ \({\large \frac{1}{2}} \left \{ 1- \left ( {\large \frac{2}{3}} \right )^{10} \right \}\) 정답 ④
좌표평면 위에 오른쪽 그림과 같이 벡터 \(\overrightarrow{a_0},\;\;\overrightarrow{a_1},\;\;\cdots,\;\;\overrightarrow{a_6}\) 이 평면 위에 주어져 있다. \(\left | \overrightarrow{a_i} \right | = s_i \;\; (i=0,\;1,\; \cdots ,\; 6)\) 라 할 때, 다음 중 옳은 것은? ① \(s_0 - s_1 +s_3 -s_4 + s_6 =0\) ② \(s_0 +s_1 -s_3 -s_4 +s_6 =0\) ③ \(s_0 +s_1 +s_3 -s_4 -s_6 =0\) ④ \(s_0 - s_1 -s_3 -s_4 +s_6 =0\) ⑤ \(s_0 -s_1 -s_3 +s_4 +s_6 =0\) 정답 ②
모든 실수 \(x\) 에 대하여 미분가능한 함수 \(f(x)\) 가 \(f'(1)=2\) 일 때, \[\lim \limits_{x \to 0} \dfrac{f(\cos 3x)-f(\cos x)}{x^2}\] 의 값은? ① \(8\) ② \(4\) ③ \(2\) ④ \(-4\) ⑤ \(-8\) 정답 ⑤
곡선 \(y=e^x\) 위의 점 \(\rm P\) 와 원 \((x-1)^2 +y^2 =1\) 위의 점 \(\rm Q\) 를 연결하는 선분 \(\rm PQ\) 의 길이의 최솟값은? ① \(\sqrt{2}-2\) ② \(\sqrt{2}-1\) ③ \(\sqrt{2}\) ④ \(\sqrt{2}+1\) ⑤ \(\sqrt{2}+2\) 정답 ②
부등식 \(-\ln x \le y \le \ln x,\;\;x>1\) 을 만족시키는 영역 위의 두 동점 \({\rm P} (a,\;b),\;\; {\rm Q}(c,\;d)\) 에 대하여 \(\dfrac{b+d}{a+c}\) 의 최댓값은? ① \(\dfrac{1}{e}\) ② \(1\) ③ \(\sqrt{e}\) ④ \(e\) ⑤ \(e^2\) 정답 ①