관리 메뉴


수악중독

기하와 벡터_공간도형_삼수선의 정리_난이도 중 본문

(9차) 기하와 벡터 문제 풀이/공간도형 및 공간좌표

기하와 벡터_공간도형_삼수선의 정리_난이도 중

수악중독 2015. 9. 2. 15:11

그림과 같이 \(\overline{\rm AB} =9,\; \overline{\rm BC} =12,\; \cos(\angle {\rm ABC}) = \dfrac{\sqrt{3}}{3}\) 인 사면체 \(\rm ABCD\) 에 대하여 점 \(\rm A\) 의 평면 \(\rm BCD\) 위로의 정사영을 \(\rm P\) 라 하고 점 \(\rm A\) 에서 선분 \(\rm BC\) 에 내린 수선의 발을 \(\rm Q\) 라 하자. \(\cos(\angle {\rm AQP}) = \dfrac{\sqrt{3}}{6}\) 일 때, 삼각형 \(\rm BCP\) 의 넓이는 \(k\) 이다. \(k^2\) 의 값을 구하시오.




Comments