관리 메뉴


수악중독

수학2_미분_변화율_난이도 중 본문

(9차) 미적분 II 문제풀이/미분

수학2_미분_변화율_난이도 중

수악중독 2014. 2. 21. 08:51

그림과 같이 좌표평면에서 원 \(x^2+y^2=1\) 위의 점 \(\rm P\) 가 점 \((1, \;0)\) 에서 출발하여 원점을 중심으로 매초 \(\dfrac{1}{40}\)(라디안)의 일정한 속력으로 원 위를 시계 반대 방향으로 움직이고 있다. 점 \(\rm P\) 에서 \(x\) 축에 평행한 직선을 그을 떄, 원과 직선으로 둘러싸인 어두운 부분의 넓이를 \(S\) 라 하자. 점 \(\rm P\) 가 점 \(\left ( \dfrac{\sqrt{3}}{2},\; \dfrac{1}{2} \right )\) 을 지나는 순간, 넓이 \(S\) 의 시간(초)에 대한 변화율은 \(\dfrac{b}{a}\) 이다. \(a+b\) 의 값을 구하시오. (단, \(a\) 와 \(b\) 는 서로소인 자연수이다.)

 

 

Comments