일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수학질문답변
- 행렬과 그래프
- 수만휘 교과서
- 접선의 방정식
- 수능저격
- 수학1
- 기하와 벡터
- 이정근
- 함수의 연속
- 적분과 통계
- 수악중독
- 심화미적
- 여러 가지 수열
- 수열의 극한
- 행렬
- 도형과 무한등비급수
- 확률
- 적분
- 미적분과 통계기본
- 함수의 그래프와 미분
- 수열
- 로그함수의 그래프
- 미분
- 중복조합
- 경우의 수
- 정적분
- 수학질문
- 이차곡선
- 수학2
- 함수의 극한
- Today
- Total
목록수학질문 (122)
수악중독
좌표공간에서 집합 \(\left \{ (x,\;y,\;z) \;{\Large \vert}\; x^2 +(z-1)^2 \le 1,\;\; y=0,\;\; 0 \le z \le 1 \right \}\) 이 나타내는 도형을 \(C\) 라 하자. 점 \({\rm A}(0,\;-1,\;2)\) 와 도형 \(C\) 위의 점 \(\rm P\) 를 지나는 직선이 \(xy\) 평면과 만나는 점을 \(\rm Q\) 라 하면 점 \(\rm Q\) 가 나타내는 도형의 넓이는 \(\dfrac{b}{a}\) 이다. 이때, \(a+b\) 의 값을 구하시오. (단, \(a,\;b\) 는 서로소인 자연수이다.) 정답 11
점근선의 방정식이 \(y= \sqrt{2} x,\;y=-\sqrt{2} x\) 이고 \(x\) 축과 만나는 두 점 사이의 거리가 \(4\) 인 쌍곡선이 있다. 원점 \(\rm O\) 와 이 쌍곡선 위의 한 점 \(\rm P\) 를 잇는 선분 \(\rm OP\) 의 길이를 \(d\) 라 할 때, \(\overline {\rm PF'} \cdot \overline {\rm PF} \) 의 값을 \(d\) 를 이용하여 나타내면? (단, \(\rm F,\;F'\) 는 이 쌍곡선의 초점이다.) ① \(4d\) ② \(4+d^2\) ③ \(4+2d\) ④ \(2d\) ⑤ \(d^2\) 정답 ②
그림과 같이 직선 \(y=x-1\) 과 타원 \({\Large \frac{x^2}{m}} + {\Large \frac{y^2}{n}} = 1\) \( (m>n>0) \) 이 서로 다른 두 점 \(\rm M,\;N\) 에서 만난다. 원점 \(\rm O\) 와 선분 \(\rm MN\) 의 중점 \(\rm P\) 를 잇는 직선이 \(x\) 축과 이루는 양의 각이 \(150^o\) 일 때, \(\Large \frac{m}{n}\) 의 값은? ① \(\Large \frac{6}{5}\) ② \(\Large \frac{4}{3}\) ③ \(\sqrt{2}\) ④ \(\sqrt{3}\) ⑤ \(\Large \frac{3 \sqrt{3}}{2}\) 정답 ④
이차곡선 \(y^2 - ({\rm log} a) x^2 = 1-4a\) 가 두 초점이 모두 \(x\) 축 위에 있는 타원이 되기 위한 양수 \(a\) 의 값의 범위는 \({\dfrac{1}{m}}
닫힌구간 \([-1,\;3]\) 에서 정의된 함수 \(f(x)=x^3 -6x^2 +9x+5\) 에 대하여 구간 \([-1,\;3]\) 에 속하는 서로 다른 임의의 두 수 \(x_1 ,\; x_2 \;\;(x_1
함수 \(f\) 는 닫힌구간 \([0,\;5]\) 에서 정의되고, 열린구간 \((0,\;5)\) 에서 미분가능한 함수이다. 또, \(f(0)=4,\;\;f(5)=-1\) 이다. 함수 \(g(x)=\dfrac{f(x)}{x+1}\) 에서 평균값 정리를 만족하는 \(0
이계도함수가 존재하는 함수 \(f(x)\) 에 대하여 \[f''(x)>0,\;\;\; f(0)=1,\;\;\;f(1)=0\] 일때, \(f'(0),\;\;-1,\;\;f'(1)\) 을 큰 것부터 순서대로 적으면? ① \(f'(0),\;\;-1,\;\;f'(1)\) ② \(f'(0),\;\;f'(1),\;\;-1\) ③ \(f'(1),\;\;-1,\;\;f'(0)\) ④ \(f'(1),\;\;f'(0),\;\;-1\) ⑤ \(-1,\;\;f'(0),\;\;f'(1)\) 정답 ③
곡선 \(y=\cos 2x + 2 \sin x +k\) 가 \(x\) 축에 접할 때, 양수 \(k\) 의 값은? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ③
정현이는 금년 초에 대출금 \(1000\) 만 원을 빌리고 금년 말부터 시작하여 \(10\) 회 동안 갚기로 하였다. 그해 말에 \(a\) 원을 갚고 다음 해 말부터는 직전년도보다 \(10\%\) 증액된 금액을 갚는다. 예를 들면, 두 번째 갚는 금액은 \(1.1a\), 세 번째 갚은 금액은 \(1.1^2 a\) 이다. 2년이 지난 후 두 번째 금액을 갚고 난 직후 목돈이 생겨 정현이는 나머지 금액을 일시에 갚고 싶어 한다. 이때 정현이가 일시에 갚아야 할 금액은 얼마인가? (단, 연이율 \(10\%\), \(1\) 년마다 복리로 계산한다.) ① \(952\) 만 원 ② \(958\) 만 원 ③ \(962\) 만 원 ④ \(968\) 만 원 ⑤ \(972\) 만 원 정답 ④