일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 도형과 무한등비급수
- 중복조합
- 확률
- 수학질문답변
- 함수의 그래프와 미분
- 수능저격
- 경우의 수
- 수열
- 수학1
- 심화미적
- 수열의 극한
- 이정근
- 수만휘 교과서
- 행렬
- 기하와 벡터
- 미적분과 통계기본
- 적분과 통계
- 수학2
- 접선의 방정식
- 정적분
- 함수의 극한
- 여러 가지 수열
- 수학질문
- 행렬과 그래프
- 이차곡선
- 로그함수의 그래프
- 미분
- 함수의 연속
- 적분
- 수악중독
- Today
- Total
목록수학질문 (122)
수악중독
두 인공위성 \(\rm A,\;B\) 가 지구의 중심으로부터 각각 1만\(\rm km\), 2만\(\rm km\) 떨어진 채 원형 궤도를 유지하며 지구의 적도 상공을 각각 1시간 동안에 \(\Large \frac {\pi}{4}\) 라디안, \(\Large \frac{\pi}{3}\) 라디안의 각속도로 같은 방향으로 돌고 있다. 현재 \(\rm A\) 와 \(\rm B\) 는 그림과 같이 지구를 기준으로 정반대쪽에 위치하고 있다. 두 인공위성 \(\rm A\) 와 \(\rm B\) 사이의 거리가 처음으로 2만\(\rm km\) 이하로 되는 때는 지금으로부터 몇 시간 후인가? \(\left ( 단, \cos {\dfrac{5}{12}}\pi = {\dfrac{1}{4}}로\;계산한다. \right) \) ..
오른쪽 그림과 같이 \(x\) 축과 곡선 \(y=e^{-x^2} \) 에 동시에 접하고 있는 직사각형 \(\rm ABCD\) 가 있다. 이때, 직사각형 \(\rm ABCD\) 의 넓이의 최댓값은? ① \(\dfrac{\sqrt{2e}}{e}\) ② \(\dfrac{\sqrt{2e}}{2}\) ③ \(\sqrt{e}\) ④ \(e\) ⑤ \(\sqrt{2}e\) 정답 ①
곡선 \(y=e^x\) 위의 점 \(\rm P\) 와 원 \((x-1)^2 +y^2 =1\) 위의 점 \(\rm Q\) 를 연결하는 선분 \(\rm PQ\) 의 길이의 최솟값은? ① \(\sqrt{2}-2\) ② \(\sqrt{2}-1\) ③ \(\sqrt{2}\) ④ \(\sqrt{2}+1\) ⑤ \(\sqrt{2}+2\) 정답 ②
함수 \(f(x)=\cos ^2 x\) 위의 두 점 \((a,\;f(a)),\;\; (b,\;f(b))\) 에서의 접선이 서로 수직으로 만날 때, \(\cos (a-b)\) 의 값은? \(\left (단, \;0
원점을 동시에 출발하여 수직선 위를 움직이는 두 점 \(\rm P,\;Q\) 의 시각 \(t\) 에서의 속도가 각각 \(v_P (t)=1-2t,\; v_Q (t) = 3t^2 -1\) 일 때, \(\overline {\rm PQ}\) 의 중점 \(\rm M\) 이 다시 원점을 지날 때까지 점 \(M\) 이 움직인 거리는? ① \(\dfrac{1}{27}\) ② \(\dfrac{2}{27}\) ③ \(\dfrac{1}{9}\) ④ \(\dfrac{4}{27}\) ⑤ \(\dfrac{5}{27}\) 정답 ④
오른쪽 그림과 같이 물이 가득 채워져 있는 직원기둥의 물통을 천천히 기울여 물을 쏟다가 밑면의 중심 \(\rm O\) 에 수면이 닿을 때, 멈추었다. 처음 물통에 채워져 있는 물의 양을 \(V\), 남아 있는 물의 양을 \(V_1\) 이라 할 때, \(\dfrac{V_1}{V}\) 의 값은? ① \(\dfrac{2}{3\pi}\) ② \(\dfrac{4}{3\pi}\) ③ \(\dfrac{2}{3} \pi\) ④ \(\dfrac{3}{4} \pi\) ⑤ \(\dfrac{2}{3} \pi\)
직선 운동을 하는 물체의 시각 \(t\) 에서의 속도가 \(v(t)=t^2 - 4t +3\) 일 때, 시각 \(t=0\) 에서 \(t=2\) 까지의 이 물체가 움직인 거리를 구하시오.
지면에서 처음 속도 \(49 \rm m/초\) 로 똑바로 위로 던진 물체의 \(t\) 초 후의 속도 \(v(t)\) 는 \(v(t)=29-9.8t \;(\rm m/초)\) 라고 한다. 물체를 던진 후 \(2\) 초 후부터 \(6\) 초까지 이 물체가 움직인 거리를 구하시오. (단, 단위는 \(\rm m\) 이다.)
방정식 \(\sin \left \{ \dfrac{\pi}{4} \log _x \left ( \dfrac{d}{dx} \displaystyle \int x^2 dx\right ) \right \} = x^2 -4x -4 \) 의 모든 실근의 합을 구하시오.