관리 메뉴


수악중독

미적분과 통계기본_확률_확률의 계산_난이도 상 본문

(9차) 확률과 통계 문제풀이/확률

미적분과 통계기본_확률_확률의 계산_난이도 상

수악중독 2010. 3. 8. 11:55
다음 그림과 같이 점 \(\rm A\) 에서 \(\rm F\) 까지 6개의 점이 선분으로 연결된 도형 위를 점 \(\rm P\)가 1초마다 선분을 따라 한 칸씩 이동한다. 이 때, 점 \(\rm P\)가 어느 한 점에 위치하면 그 점에 모이는 선분 중에서 하나를 같은 확률로 선택하여 이동한다. 점 \(\rm P\)가 점 \(\rm A\)를 출발하여 10초 동안 움직인 후 점 \(\rm F\)에 도착하여 멈출 확률을 \(2^\alpha \cdot 3^\beta\)라 할 때, \(\left| {\alpha \beta } \right|\) 의 값을 구하시오. (단, 점 \(\rm P\)는 \(\rm A\) 또는 \(\rm F\)에 도착하면 멈춘다.) 




Comments