일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 이정근
- 접선의 방정식
- 함수의 연속
- 심화미적
- 수학질문
- 함수의 극한
- 미적분과 통계기본
- 적분
- 여러 가지 수열
- 수학2
- 정적분
- 미분
- 수학1
- 수열
- 수만휘 교과서
- 적분과 통계
- 함수의 그래프와 미분
- 확률
- 도형과 무한등비급수
- 행렬과 그래프
- 수악중독
- 기하와 벡터
- 수학질문답변
- 중복조합
- 수열의 극한
- 이차곡선
- 행렬
- 경우의 수
- 로그함수의 그래프
- 수능저격
- Today
- Total
목록점의 평행이동 (3)
수악중독
좌표평면 위에 점 ${\rm P}_1(1, \; 0)$ 이 있다. 자연수 $n$ 에 대하여 점 ${\rm P}_n$의 좌표를 $(x_n, \; y_n)$이라 할 때, $x_n + y_n$ 을 $3$ 으로 나누었을 때의 나머지 $r_n$ 의 값에 따라 다음과 같이 점 ${\rm P}_{n+1}$ 을 정한다. (가) $r_n=1$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향으로 $1$ 만큼 평행이동시킨 점을 ${\rm P}_{n+1}$ 이라 한다. (나) $r_n=2$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향으로 $2$ 만큼, $y$ 축의 방향으로 $2$ 만큼 평행이동시킨 점을 ${\rm P}_{n+1}$ 이라 한다. (다) $r_n=0$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향..
그림과 같이 좌표평면에서 세 점 $\rm O(0, \;0), \;A(4, \;0), \; B(0, \;3)$ 을 꼭짓점으로 하는 삼각형 $\rm OAB$ 를 평행이동한 도형을 삼각형 $\rm O'A'B'$ 이라 하자. 점 $\rm A'$ 의 좌표가 $(9, \;2)$ 일 때, 삼각형 $\rm O'A'B'$ 에 내접하는 원의 방정식은 $x^2+y^2+ax+by+c=0$ 이다. $a+b+c$ 의 값을 구하시오. (단, $a, \;b,\;c$ 는 상수이다.) 정답 $26$ 먼저 삼각형 $\rm OAB$ 에 내접하는 원의 방정식을 구한 다음 이 원을 $x$ 축의 방향으로 $5$ 만큼, $y$ 축의 방향으로 $2$ 만큼 평행이동 시킨 원의 방정식을 구하면 된다. ($\because \rm A \rightarrow..
평행이동 - 점의 평행이동 & 도형의 평행이동 점의 대칭이동 도형의 대칭이동 도형의 이동 심화 개념 절댓값이 포함된 함수의 그래프 원함수가 \(y=-x+1\)인 경우 다음 각각의 그래프를 그려보자. 1) \(y=f(|x|)\) (\(x\)에만 절댓값이 있는 경우 절댓값 안이 0보다 큰 구간(\(x>0\)인 구간)에서만 그래프를 그려서 \(y\)축에 대칭 복사한다. 2) \(|y|=f(x)\) (\(y\)에만 절댓값이 있는 경우) 절댓값 안이 0보다 큰 구간(\(y>0\)인 구간)에서만 그래프를 그려서 \(x\)축에 대칭 복사하다. 3) \(|y|=f(|x|)\) (절댓값이 \(x, y\) 모두게 있는 경우) 절댓값 안이 모두 0보다 큰 구간 (\(x>0, y>0\)인 구간, 결과적으로 제 1사분면)에서만..