일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 확률
- 기하와 벡터
- 수능저격
- 도형과 무한등비급수
- 정적분
- 경우의 수
- 함수의 극한
- 수만휘 교과서
- 적분과 통계
- 수학2
- 수학질문
- 중복조합
- 미분
- 수악중독
- 행렬과 그래프
- 접선의 방정식
- 행렬
- 수학1
- 함수의 연속
- 이정근
- 적분
- 수열의 극한
- 로그함수의 그래프
- 함수의 그래프와 미분
- 수학질문답변
- 수열
- 심화미적
- 여러 가지 수열
- 이차곡선
- 미적분과 통계기본
- Today
- Total
목록극대와 극소 (17)
수악중독
자연수 $n$ 에 대하여 열린 구간 $(3n-3, \; 3n)$ 에서 함수 $$f(x)=(2x-3n) \sin 2x - \left ( 2x^2 -6nx +4n^2 -1 \right ) \cos 2x$$가 $x=\alpha$ 에서 극대 또는 극소가 되는 모든 $\alpha$ 의 값의 합을 $a_n$ 이라 하자. $\cos a_m = 0$ 이 되도록 하는 자연수 $m$ 의 최솟값을 $l$ 이라 할 때, $\sum \limits_{k=1}^{l+2} a_k$ 의 값은? ① $7+\dfrac{45}{2}\pi$ ② $8+\dfrac{45}{2}\pi$ ③ $7+\dfrac{47}{2}\pi$ ④ $8+\dfrac{47}{2}\pi$ ⑤ $7+\dfrac{49}{2}\pi$ 정답 ①
최고차항의 계수의 부호가 서로 다른 두 삼차다항식 $f(x), \; g(x)$ 가 $$|f(x)| = \begin{cases}g(x)-4x-26 & (x \le a) \\ g(x)+2x^3-14x^2+12x+6 & (x>a) \end{cases}$$ 를 만족시킬 때, 방정식 $f(x)+a(x-k)^2=0$ 이 서로 다른 세 실근을 갖도록 하는 모든 자연수 $k$ 의 합을 구하시오. (단, $a$ 는 상수이다.) 정답 $11$
함수 $f(x)=x^3-12x$ 와 실수 $t$ 에 대하여 점 $(a, \; f(a))$ 를 지나고 기울기가 $t$ 인 직선이 함수 $y=|f(x)|$ 의 그래프와 만나는 점의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가 다음 조건을 만족시킨다. 함수 $g(t)$ 가 $t=k$ 에서 불연속이 되는 $k$ 의 값 중에서 가장 작은 값은 $0$ 이다. $\sum \limits_{n=1}^{36} g(n)$ 의 값을 구하시오. 정답 $82$
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 두 실수 $a, \; b\; \left (0
함수 $$f(x)=\left \{ \begin{array}{lc} e^x & (0 \le x < 1) \\ e^{2-x}&(1 \le x \le 2) \end{array} \right . $$ 에 대하여 열린 구간 $(0, \; 2)$ 에서 정의된 함수 $$g(x) = \displaystyle \int_0^x |f(x)-f(t)|\;dt$$ 의 극댓값과 극솟값의 차는 $ae+b\sqrt[3]{e^2}$ 이다. $(ab)^2$ 의 값을 구하시오. (단, $a, \; b$ 는 유리수이다.) 정답 $36$
함수 $f(x)=e^{-\frac{1}{2}x^2}$ 과 실수 $t$ 에 대하여 $$f(t)=f'(a)(t-2)$$ 를 만족시키는 실수 $a$ 의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가 불연속인 점의 개수는? ① $1$ ② $2$ ③ $3$ ④ $4$ ⑤ $5$ 정답 ②
최고차항의 계수가 $1$ 인 사차함수 $f(x)$ 와 함수 $g(x)=f(x)e^{-f(x)}$ 가 다음 조건을 만족시킨다. 세 집합 $A=\{ t \; | \; f'(t)=0 \}$ $B=\{ t \; | \;$ 함수 $g(x)$ 는 $x=t \; (t -1)$ 에서 극값을 갖는다.$\}$ 에 대하여 $n(A \cap B) = n(A \cap C) = n(B) = n(C)-1$ 이며, 집합 $C$ 의 모든 원소가 자연수이고 그 합은 $5$ 이다. $f(-9)$ 의 값을 구하시오. 정답 $14$
최고차항의 계수가 $1$ 인 다항함수 $f(x)$ 와 $$g(x)=x-\dfrac{f(x)}{f'(x)}$$ 가 다음 조건을 만족시킨다. (가) 방정식 $f(x)=0$ 의 실근은 $0$ 과 $2$ 뿐이고 허근은 존재하지 않는다. (나) $\lim \limits_{x \to 2} \dfrac{(x-2)^3}{f(x)}$ 이 존재한다.(다) 함수 $\left | \dfrac{g(x)}{x} \right |$ 는 $x=\dfrac{5}{4}$ 에서 연속이고 미분가능하지 않다. 함수 $g(x)$ 의 극솟값을 $k$ 라 할 때, $27k$ 의 값을 구하시오. 정답 $50$
삼차함수 $f(x)$ 의 도함수 $y=f'(x)$ 의 그래프가 그림과 같을 때, 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $f(0)
삼차함수 \(f(x)=x^3+3x^2-9x\) 에 대하여 함수 \(g(x)\) 를 \[g\left( x \right) = \left\{ {\begin{array}{ll}{f\left( x \right)}\\{m - f\left( x \right)}\\{n + f\left( x \right)}\end{array}} \right.\begin{array}{ll}{\;\;\;\left( {x < a} \right)}\\{\;\;\;\left( {a \le x < b} \right)}\\{\;\;\;\left( {x \ge b} \right)}\end{array}\] 로 정의한다. 함수 \(g(x)\) 가 모든 실수 \(x\) 에 대하여 미분 가능 하도록 상수 \(a, \; b\) 와 \(m, \;n\) 의 값을..