일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 |
- 행렬
- 수악중독
- 여러 가지 수열
- 수능저격
- 함수의 극한
- 정적분
- 함수의 연속
- 중복조합
- 미적분과 통계기본
- 적분
- 수열
- 수학1
- 적분과 통계
- 확률
- 접선의 방정식
- 수학2
- 도형과 무한등비급수
- 함수의 그래프와 미분
- 수학질문답변
- 기하와 벡터
- 로그함수의 그래프
- 수열의 극한
- 이정근
- 미분
- 수학질문
- 경우의 수
- 행렬과 그래프
- 수만휘 교과서
- 심화미적
- 이차곡선
- Today
- Total
목록2023/11 (43)
수악중독
함수 $f(x)=\dfrac{1}{9}x(x-6)(x-9)$ 와 실수 $t \; (0
그림과 같이 $$\overline{\mathrm{AB}}=3, \; \overline{\mathrm{BC}}=\sqrt{13}, \; \overline{\mathrm{AD}}\times \overline{\mathrm{CD}}=9, \; \angle \mathrm{BAC}=\dfrac{\pi}{3}$$ 인 사각형 $\mathrm{ABCD}$ 가 있다. 삼각형 $\mathrm{ABC}$ 의 넓이를 $S_1$, 삼각형 $\mathrm{ACD}$ 의 넓이를 $S_2$라 하고, 삼각형 $\mathrm{ACD}$ 의 외접원의 반지름의 길이를 $R$ 이라 하자. $S_2=\dfrac{5}{6}S_1$ 일 때, $\dfrac{R}{\sin(\angle \mathrm{ADC})}$ 의 값은? ① $\dfrac{54}{..
두 자연수 $a, \; b$ 에 대하여 함수 $f(x)$ 는 $$f(x)=\begin{cases}2x^3-6x+1 & (x \le 2) \\ a(x-2)(x-b)+9 & (x>2)\end{cases}$$ 이다. 실수 $t$ 에 대하여 함수 $y=f(x)$ 의 그래프와 직선 $y=t$ 가 만나는 점의 개수를 $g(t)$ 라 하자. $$g(k)+\lim \limits_{t \to k-}g(t)+\lim \limits_{t \to k+}g(t)=9$$ 를 만족시키는 실수 $k$ 의 개수가 $1$ 이 되도록 하는 두 자연수 $a, \; b$ 의 순서쌍 $(a, \; b)$ 에 대하여 $a+b$ 의 최댓값은? ① $51$ ② $52$ ③ $53$ ④ $54$ ⑤ $55$ 더보기 정답 ①
첫째항이 자연수인 수열 $\{a_n\}$ 이 모든 자연수 $n$ 에 대하여 $$a_{n+1}=\begin{cases}2^{a_n} & (a_n\text{ 이 홀수인 경우}) \\ \dfrac{1}{2} a_n & (a_n \text{ 이 짝수인 경우})\end{cases}$$ 를 만족시킬 때, $a_6+a_7=3$ 이 되도록 하는 모든 $a_1$ 의 값의 합은? ① $139$ ② $146$ ③ $153$ ④ $160$ ⑤ $167$ 더보기 정답 ③
방정식 $3^{x-8}=\left (\dfrac{1}{27} \right )^x$ 을 만족시키는 실수 $x$ 의 값을 구하시오. 더보기 정답 $2$
함수 $f(x)=(x+1)\left (x^2+3 \right )$ 에 대하여 $f'(1)$ 의 값을 구하시오. 더보기 정답 $8$
두 수열 $\{a_n\}, \; \{b_n\}$ 에 대하여 $$\sum \limits_{k=1}^{10}a_k = \sum \limits_{k=1}^{10}(2b_k-1), \quad \sum \limits_{k=1}^{10}(3a_k +b_k )=33$$ 일 때, $\sum \limits_{k=1}^{10} b_k$ 의 값을 구하시오. 더보기 정답 $9$
함수 $f(x)=\sin\dfrac{\pi}{4}x$ 라 할 때, $0
$a>\sqrt{2}$ 인 실수 $a$ 에 대하여 함수 $f(x)$ 를 $$f(x)=-x^3+ax^2+2x$$ 라 하자. 곡선 $y=f(x)$ 위의 점 $\mathrm{O}(0, \; 0)$ 에서의 접선이 곡선 $y=f(x)$ 와 만나는 점 중 $\mathrm{O}$ 가 아닌 점을 $\mathrm{A}$ 라 하고, 곡선 $y=f(x)$ 위의 점 $\mathrm{A}$ 에서의 접선이 $x$ 축과 만나는 점을 $\mathrm{B}$ 라 하자. 점 $\mathrm{A}$ 가 선분 $\mathrm{OB}$ 를 지름으로 하는 원 위의 점일 때, $\overline{\mathrm{OA}}\times \overline{\mathrm{AB}}$ 의 값을 구하시오. 더보기 정답 $25$