일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 심화미적
- 행렬과 그래프
- 행렬
- 적분
- 함수의 연속
- 미분
- 수열
- 수능저격
- 미적분과 통계기본
- 로그함수의 그래프
- 수학2
- 수학질문
- 수학1
- 수열의 극한
- 확률
- 중복조합
- 기하와 벡터
- 이정근
- 정적분
- 수악중독
- 여러 가지 수열
- 함수의 그래프와 미분
- 적분과 통계
- 함수의 극한
- 접선의 방정식
- 도형과 무한등비급수
- 수학질문답변
- 경우의 수
- 수만휘 교과서
- 이차곡선
- Today
- Total
목록전체 글 (5851)
수악중독
\( f(x) \) 가 \( x \) 에 대한 일차식이고, \( \displaystyle \int_{0}^{1} f(x) {\rm d } x = 1 \) 을 만족할 때, \( S = \displaystyle \int_{0}^{1} \left\{ f(x) \right\}^2 {\rm d } x \) 에 대한 다음 설명 중 옳은 것은? ① \( -1 1\) ④ \(S\)는 모든 양수값을 가진다. ⑤ \(S\)는 모든 실수 값을 가진다. 정답 ③
\(a>0,\;\;b>0,\;\;a\ne 1,\;\; b \ne 1\) 일 때, 함수 \[f(x)=\dfrac{b^x +\log _a x}{a^x + \log _b x}\] 에 대하여 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. \(11\) 이다. ㄴ. \(b
실수 \(x,\;y\) 가 \(x^2 +y^2 =1\) 을 만족할 때, \(x^3 +y^3\) 의 최댓값과 최솟값의 합은? ① \(-1\) ② \(0\) ③ \(1\) ④ \(2\) ⑤ \(3\) 정답 ② 이 문제의 풀이는 수학2 수준에서의 풀이법입니다. 심화미적의 학습을 끝낸 학생들은 x=cosθ, y=sinθ 로 치환하여 풀어도 됩니다.
삼차함수 \(f(x)=x^3 +ax^2 +bx\) 의 그래프는 극점을 가지며 \(x\) 축과 원점에서만 만난다. 또, 도함수 \(y=f\;'(x)\) 의 그래프는 \(x=n\) (정수)에서 극점을 갖는다고 할 때, 두 상수 \(a,\;b\) 의 합 \(a+b\) 의 값을 구하시오. (단, \(a,\;b\) 는 \(10\) 보다 크지 않은 자연수이다.) 정답 16
그림과 같이 높이가 \(30 \rm cm\) 인 그릇 \(\rm A\) 에 물이 가득 채워져 있고, 그릇 \(\rm A\) 바로 아래에 밑면의 반지름의 길이가 \(20 \rm cm\) 이고 높이가 \(30 \rm cm\) 인 원기둥 모양의 그릇 \(\rm B\)가 있다. 그릇 \(\rm A\) 에 반지름의 길이가 \(10 \rm cm\)인 쇠공 \(\rm C\) 를 매초 \(1 \rm cm\) 의 속력으로 잠기도록 넣으면 그릇 \(\rm A\) 에서 넘쳐 나온 물이 모두 그릇 \(\rm B\) 에 채워진다. 쇠공이 물에 잠기기 시작하여 \(10\)초가 되는 순간 그릇 \(\rm B\) 에서 수면이 상승하는 속도는? (단, 그릇 \(\rm A\) 에 넘쳐 나온 물이 그릇 \(\rm B\) 에 떨어지는 시간..
좌표공간에서 원점을 중심으로 하고 반지름의 길이가 \(9\) 인 구가 세 점 \({\rm A}(18,\;0,\;0),\;\;{\rm B}(0,\;9,\;0),\;\; {\rm C}(0,\;0,\;9)\) 를 지나는 평면에 의하여 잘린 도형의 넓이는 \(a\pi\) 이다. 이때, \(a\) 의 값을 구하시오. 정답 45
한 평면 위에 있지 않은 네 점 \(\rm A,\;B,\;C,\;D\) 에 대하여 선분 \(\rm BD\), 선분 \(\rm CD\), 선분 \(\rm AC\), 선분 \(\rm AB\) 각각의 중점 \(\rm E,\;F,\;G,\;H\) 는 한 평면 위에 있다. \(\overline {\rm AB}= \overline {\rm CD}=7\), \(\overline {\rm AC}=\overline {\rm BD}=5\), \(\overline {\rm BC}=6\) 이고 평면 \(\rm ABC\) 와 평면 \(\rm BCD\) 가 이루는 각이 \(60^o\) 일 때, 사각형 \(\rm EFGH\) 의 평면 \(\rm BCD\) 위로의 정사영의 넓이를 \(S\) 라 하자. 이 때, \(4S^2\) 의 값..
정 \(n\) 각 기둥에서 밑면의 한 모서리와 꼬인 위치에 있는 모서리의 개수를 \(f(n)\) 이라 하자. 예를 들어, \(f(3)=3,\;\;f(4)=4\) 이다. 이때, \(\sum \limits _{n=3}^{30} f(n)\) 의 값을 구하시오. 정답 826
한 변의 길이가 \(2\) 인 정사각형 \(\rm ABCD\) 의 각 변의 중점을 각각 \(\rm E,\; F,\; G,\; H\) 라고 하자. 그림과 같이 합동인 \(4\) 개의 포물선으로 둘러싸인 어두운 부분의 넓이가 \(\dfrac{b\sqrt{2}}{a}- \dfrac{d}{c}\) 일 때, \(a+b+c+d\) 의 값을 구하시오. (단, \(a\) 와 \(b\), \(c\) 와 \(d\) 는 각각 서로소인 자연수이다.) 정답 21