일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 미적분과 통계기본
- 접선의 방정식
- 이정근
- 중복조합
- 함수의 그래프와 미분
- 함수의 연속
- 이차곡선
- 도형과 무한등비급수
- 로그함수의 그래프
- 수열의 극한
- 행렬
- 미분
- 수학2
- 여러 가지 수열
- 기하와 벡터
- 수열
- 수악중독
- 적분
- 확률
- 함수의 극한
- 행렬과 그래프
- 심화미적
- 경우의 수
- 수학질문
- 적분과 통계
- 수학질문답변
- 수능저격
- 수만휘 교과서
- 수학1
- 정적분
- Today
- Total
목록AMC12 (25)
수악중독
Three cubes are each formed from the pattern shown. They are then stacked on a table one on top of another so that the \(13\) visible numbers have the greatest possible sum. What is that sum?(A) \(154\) (B) \(159\) (C) \(164\) (D) \(167\) (E) \(189\) 정답 (C)
A function \(f\) has domain \([0, \; 2]\) and range \([0, \; 1]\). (The notation \([a, \; b]\) denotes \( \{ x\; : \; a \le x \le b \}\).) What are the domain and range, respectively, of the function \(g\) defined by \(g(x)=1-f(1+x)\) ? (A) \([-1, \; 1 ], \; [-1, \; 0]\)(B) \([-1, \; 1 ], \; [0, \; 1]\)(C) \([0, \; 2 ], \; [-1, \; 0]\)(D) \([1, \; 3 ], \; [-1, \; 0]\)(E) \([1, \; 3], \; [0, \; 1..
Points \(\rm A\) and \( \rm B\) lie on a circle centered at \( \rm O\), and \( \rm \angle AOB= 60 ^{\rm o} \). A ssecond circle is internally tangent to the first and tangent to both \( \overline{\rm OA}\) and \( \overline{\rm OB}\). What is the ratio of the area of the smaller circle to that of the larger circle? (A) \(\dfrac{1}{16}\) (B) \(\dfrac{1}{9}\) (C) \(\dfrac{1}{8}\) (D) \(\dfrac{1}{6}..
What is the area of the region defined by the inequality \(|3x-18| + |2y+7| \le 3 \) ? (A) \(3\) (B) \(\dfrac{7}{2}\) (C) \(4\) (D) \(\dfrac{9}{2}\) (E) \(5\) 정답 (A)
Let \(k=2008^2 + 2^{2008}\). What is the units digit of \(k^2 + 2^k\) ? (A) \(0\) (B) \(2\) (C) \(4\) (D) \(6\) (E) \(8\) 정답 (D)
The numbers \(\log \left ( a^3 b^7 \right ) , \log \left ( a^5 b^{12} \right ) \), and \(\log \left ( a^8 b^{15} \right )\) are the first three terms of an arithmetic sequence, and the \(12^{th}\) term of the sequence is \( \log \left ( b^n \right ) \). What is \(n\) ? (A) \(40\) (B) \(56\) (C) \(76\) (D) \(112\) (E) \(143\) 정답 (D)
Let \(a_1 , \; a_2 , \; \cdots\) be a sequence of integers determined by the rule \(a_n = \dfrac{a_{n-1}}{2}\) if \(a_{n-1}\) is even and \(a_n = 3a_{n-1} +1\) if \(a_{n-1}\) is odd. For how many positive integers \(a_1 \le 2008\) is it true that \(a_1\) is less thatn each of \(a_2 , \; a_3 ,\) and \(a_4\) ? (A) \(250\) (B) \(251\) (C) \(501\) (D) \(502\) (E) \(1004\) 정답 (D)