일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 미적분과 통계기본
- 행렬과 그래프
- 함수의 극한
- 접선의 방정식
- 심화미적
- 수열
- 행렬
- 경우의 수
- 수학2
- 수능저격
- 수학1
- 수악중독
- 기하와 벡터
- 미분
- 확률
- 적분과 통계
- 적분
- 함수의 연속
- 로그함수의 그래프
- 이정근
- 도형과 무한등비급수
- 수열의 극한
- 함수의 그래프와 미분
- 정적분
- 수학질문답변
- 여러 가지 수열
- 중복조합
- 이차곡선
- 수만휘 교과서
- 수학질문
- Today
- Total
목록기하 - 문제풀이/이차곡선 (123)
수악중독
그림과 같이 두 초점이 ${\rm F}(c, \; 0), \; {\rm F'}(-c, \; 0)$ 이고 장축의 길이가 $12$ 인 타원이 있다. 점 $\rm F$ 가 초점이고 직선 $x=-k\; (k>0)$ 이 준선인 포물선이 타원과 제 $2$ 사분면의 점 $\rm P$ 에서 만난다. 점 $\rm P$ 에서 직선 $x=-k$ 에 내린 수선의 발을 $\rm Q$ 라 할 때, 두 점 $\rm P, \; Q$ 가 다음 조건을 만족시킨다. (가) $\cos (\angle {\rm F'FP} ) = \dfrac{7}{8}$ (나) $\overline{\rm FP} - \overline{\rm F'Q} = \overline{\rm PQ} - \overline{\rm FF'}$ $c+k$ 의 값을 구하시오. 더보기 ..
두 초점이 ${\rm F}_1(c, \; 0), \; {\rm F}_2(-c, \; 0)$ 인 타원이 $x$ 축과 두 점 ${\rm A}(3, \; 0), \; {\rm B}(-3, \; 0)$ 에서 만난다. 선분 $\rm BO$ 가 주축이고, 점 $\rm F_1$ 이 한 초점이 쌍곡선의 초점 중 ${\rm F}_1$ 이 아닌 점을 ${\rm f}_3$ 이라 하자. 쌍곡선이 타원과 제 $1$ 사분면에서 만나는 점을 $\rm P$ 라 할 때, 삼각형 $\rm PF_3F_2$ 의 둘레의 길이를 구하시오. (단, $\rm O$ 는 원점이다.) 더보기 정답 $12$
자연수 $n$ 에 대하여 초점이 $\rm F$ 인 포물선 $y^2=2x$ 위의 점 ${\rm P}_n$ 이 $\overline{{\rm FP}_n}=2n$ 을 만족시킬 때, $\sum \limits_{n=1}^8 \overline{{\rm OP}_n}^2$ 의 값은 (단, $\rm O$ 는 원점이고, 점 ${\rm P}_n$ 은 제 $1$ 사분면에 있다.) ① $874$ ② $876$ ③ $878$ ④ $880$ ⑤ $882$ 더보기 정답 ⑤